Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER.
نویسندگان
چکیده
Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered in the plasma and collected by arrays of receivers. The transmission lines from the gyrotrons to the plasma and from the plasma to the receivers contain several quasioptical mirrors among other components. These are designed to produce astigmatic beam patterns in the plasma where the beam shapes will have a direct impact on the signal strength of the diagnostic, the spatial resolution, and the robustness of probe and receiver beam overlap against density excursions. The first mirror has a line of sight to the plasma and is thus exposed to severe neutron streaming. The present neutronics and thermomechanical modeling of a first mirror on the high field side indicates that the mirror curvature may warp due to heating. This may alter the beam quality, and therefore, thermal effects have to be accounted for during the design of the mirror. The modeling further demonstrates that thin mirrors are superior to thick mirrors from a thermomechanical point of view.
منابع مشابه
Impact of ICRH on the Measurement of Fast Ions by Collective Thomson Scattering in ITER
Collective Thomson scattering (CTS) has been proposed for measuring the phase space distribution of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas in ITER. The investigated ICRH scenarios include pure second harmonic tritium heating and He minority ...
متن کاملCommissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited).
The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110 GHz) to resolve the one-dimensional velocity distribution of the confined fast ions. The steerable ...
متن کاملPFC / JA - 93 - 25 ITER Millimeter - Wave CTS Diagnostic Option
Localized alpha-particle velocity distribution and density, ion temperature, DT fuel ratio, and internal magnetic field pitch angle can all be potentially diagnosed by a collective Thomson scattering system. Relativistic electron cyclotron calculations and TORAY ray tracing for 6 tesla ITER parameters indicate that 90 GHz is an optimum frequency for this diagnostic. With 400 kW at the plasma an...
متن کاملNotch Filter Options for ITER Stray Gyrotron Radiation
ITER will have multi megawatt gyrotron systems at 170, 120, and potentially at 60 GHz for ECH, current drive, NTM control, start up, and CTS diagnostics. The ITER environment will therefore have significant background levels of stay radiation at these frequencies that can pose a problem to a number of diagnostic systems. Several deep, narrowband reject filter approaches have been examined. Thes...
متن کاملCollective Thomson Scattering Study Using Gyrotron in LHD
The collective Thomson scattering (CTS) is one of the most promising methods for evaluating the ion velocity distribution function. The study of CTS diagnostic has been started utilizing the gyrotron and antenna/transmission systems installed in LHD for high power local electron heating. One of the high power gyrotrons at 77 GHz is selected as a probing power source and a set of highly focused ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 79 10 شماره
صفحات -
تاریخ انتشار 2008